Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Nat Commun ; 15(1): 3874, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719826

RESUMEN

The "terminal hydroxyl group anchoring mechanism" has been studied on metal oxides (Al2O3, CeO2) as well as a variety of noble and transition metals (Ag, Pt, Pd, Cu, Ni, Fe, Mn, and Co) in a number of generalized studies, but there is still a gap in how to regulate the content of terminal hydroxyl groups to influence the dispersion of the active species and thus to achieve optimal catalytic performance. Herein, we utilized AlOOH as a precursor for γ-Al2O3 and induced the transformation of the exposed crystal face of γ-Al2O3 from (110) to (100) by controlling the calcination temperature to generate more terminal hydroxyl groups to anchor Ag species. Experimental results combined with AIMD and DFT show that temperature can drive the atomic rearrangement on the (110) crystal face, thereby forming a structure similar to the atomic arrangement of the (100) crystal face. This resulted in the formation of more terminal hydroxyl groups during the high-temperature calcination of the support (Al-900), which can capture Ag species to form single-atom dispersions, and ultimately develop a stable and efficient single-atom Ag-based catalyst.

2.
Acta Biomater ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38692469

RESUMEN

Bacterial infection poses a significant impediment in wound healing, necessitating the development of dressings with intrinsic antimicrobial properties. In this study, a multilayered wound dressing (STPU@MTAI2/AM1) was reported, comprising a surface-superhydrophobic treated polyurethane (STPU) sponge scaffold coupled with an antimicrobial hydrogel. A superhydrophobic protective outer layer was established on the hydrophilic PU sponge through the application of fluorinated zinc oxide nanoparticles (F-ZnO NPs), thereby resistance to environmental contamination and bacterial invasion. The adhesive and antimicrobial inner layer was an attached hydrogel (MTAI2/AM1) synthesized through the copolymerization of N-[2-(methacryloyloxy)ethyl]-N, N, N-trimethylammonium iodide and acrylamide, exhibits potent adherence to dermal surfaces and broad-spectrum antimicrobial actions against resilient bacterial strains and biofilm formation. STPU@MTAI2/AM1 maintained breathability and flexibility, ensuring comfort and conformity to the wound site. Biocompatibility of the multilayered dressing was demonstrated through hemocompatibility and cytocompatibility studies. The multilayered wound dressing has demonstrated the ability to promote wound healing when addressing MRSA-infected wounds. The hydrogel layer demonstrates no secondary damage when peeled off compared to commercial polyurethane sponge dressing. The STPU@MTAI2/AM1-treated wounds were nearly completely healed by day 14, with an average wound area of 12.2 ± 4.3 %, significantly lower than other groups. Furthermore, the expression of CD31 was significantly higher in the STPU@MTAI2/AM1 group compared to other groups, promoting angiogenesis in the wound and thereby contributing to wound healing. Therefore, the prepared multilayered wound dressing presents a promising therapeutic candidate for the management of infected wounds. STATEMENT OF SIGNIFICANCE: Healing of chronic wounds requires avoidance of biofouling and bacterial infection. However developing a wound dressing which is both anti-biofouling and antimicrobial is a challenge. A multilayered wound dressing with multifunction was developed. Its outer layer was designed to be superhydrophobic and thus anti-biofouling, and its inner layer was broad-spectrum antimicrobial and could inhibit biofilm formation. The multilayered wound dressing with adhesive property could easily be removed from the wound surface preventing the cause of secondary damage. The multilayered wound dressing has demonstrated good abilities to promote MRSA-infected wound healing and presents a viable treatment for MRSA-infected wound.

3.
Mikrochim Acta ; 191(6): 304, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710810

RESUMEN

Dual-emissive fluorescence probes were designed by integrating porphyrin into the frameworks of UiO-66 for ratiometric fluorescence sensing of amoxicillin (AMX). Porphyrin integrated UiO-66 showed dual emission in the blue and red region. AMX resulted in the quenching of blue fluorescence component, attributable to the charge neutralization and hydrogen bonds induced energy transfer. AMX was detected using (F438/F654) as output signals. Two linear relationships were observed (from 10 to 1000 nM and 1 to 100 µM), with a limit of detection of 27 nM. The porphyrin integrated UiO-66 probe was used to detect AMX in practical samples. This work widens the road for the development of dual/multiple emissive fluorescence sensors for analytical applications, providing materials and theoretical supporting for food, environmental, and human safety.


Asunto(s)
Amoxicilina , Antibacterianos , Colorantes Fluorescentes , Leche , Porfirinas , Espectrometría de Fluorescencia , Leche/química , Porfirinas/química , Antibacterianos/análisis , Antibacterianos/química , Amoxicilina/análisis , Amoxicilina/química , Colorantes Fluorescentes/química , Animales , Espectrometría de Fluorescencia/métodos , Límite de Detección , Estructuras Metalorgánicas/química , Residuos de Medicamentos/análisis , Contaminación de Alimentos/análisis
4.
Environ Sci Technol ; 58(19): 8597-8606, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38687950

RESUMEN

NiFe layered double hydroxides (NiFe-LDH) exhibited an outstanding performance and promising application potential for removing ozone. However, the effect of interlayer anions on ozone removal remains ambiguous. Here, a series of NiFe-LDH with different interlayer anions (F-, Cl-, Br-, NO3-, CO32-, and SO42-) were prepared to investigate the effect of the interlayer anion on ozone removal for the first time. It was found that the interlayer anions are a key factor affecting the water resistance of the NiFe-LDH catalyst under moist conditions. NiFe-LDH-CO32- exhibited the best water resistance, which was much better than that of NiFe-LDH containing other interlayer anions. The in situ DIRFTS demonstrates that the carbonates in the interlayer of NiFe-LDH-CO32- will undergo coordination changes through the interaction with water molecules under moist conditions, exposing new metal sites. As a result, the newly exposed metal sites could activate water molecules into hydroxyl groups that act as active sites for catalyzing ozone decomposition. This work provides a new insight into the interlayer anions of LDH, which is important for the design and development of LDH catalysts with excellent ozone removal properties.


Asunto(s)
Aniones , Hidróxidos , Ozono , Ozono/química , Hidróxidos/química , Catálisis , Aniones/química
5.
Can J Infect Dis Med Microbiol ; 2024: 7502110, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660494

RESUMEN

Introduction: The development of combinatorial adjuvants is a promising strategy to boost vaccination efficiency. Accumulating evidence indicates that manganese exerts strong immunocompetence and will become an enormous potential adjuvant. Here, we described a novel combination of Mn2+ plus aluminum hydroxide (AH) adjuvant that significantly exhibited the synergistic immune effect. Methodology. Initially, IsdB3 proteins as the immune-dominant fragment of IsdB proteins derived from Staphylococcus aureus (S. aureus) were prepared. IsdB3 proteins were identified by western blotting. Furthermore, we immunized C57/B6 mice with IsdB3 proteins plus Mn2+ and AH adjuvant. After the second immunization, the proliferation of lymphocytes was measured by the cell counting kit-8 (CCK-8) and the level of IFN-γ, IL-4, IL-10, and IL-17 cytokine from spleen lymphocytes in mice and generation of the antibodies against IsdB3 in serum was detected with ELISA, and the protective immune response was assessed through S. aureus challenge. Results: IsdB3 proteins plus Mn2+ and AH obviously stimulated the proliferation of spleen lymphocytes and increased the secretion of IFN-γ, IL-4, IL-10, and IL-17 cytokine in mice, markedly enhanced the generation of the antibodies against IsdB3 in serum, observably decreased bacterial load in organs, and greatly improved the survival rate of mice. Conclusion: These data showed that the combination of Mn2+ and AH significantly acted a synergistic effect, reinforced the immunogenicity of IsdB3, and offered a new strategy to increase vaccine efficiency.

6.
Environ Sci Technol ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687995

RESUMEN

Surface hydroxyl groups commonly exist on the catalyst and present a significant role in the catalytic reaction. Considering the lack of systematical researches on the effect of the surface hydroxyl group on reactant molecule activation, the PtOx/TiO2 and PtOx-y(OH)y/TiO2 catalysts were constructed and studied for a comprehensive understanding of the roles of the surface hydroxyl group in the oxidation of volatiles organic compounds. The PtOx/TiO2 formed by a simple treatment with nitric acid presented greatly enhanced activity for toluene oxidation in which the turnover frequency of toluene oxidation on PtOx/TiO2 was around 14 times as high as that on PtOx-y(OH)y/TiO2. Experimental and theoretical results indicated that adsorption/activation of toluene and reactivity of oxygen atom on the catalyst determined the toluene oxidation on the catalyst. The removal of surface hydroxyl groups on PtOx promoted strong electronic coupling of the Pt 5d orbital in PtOx and C 2p orbital in toluene, facilitating the electron transfers from toluene to PtOx and subsequently the adsorption/activation of toluene. Additionally, the weak Pt-O bond promoted the activation of surface lattice oxygen, accelerating the deep oxidation of activated toluene. This study clarifies the inhibiting effect of surface hydroxyl groups on PtOx in toluene oxidation, providing a further understanding of hydrocarbon oxidation.

7.
Environ Sci Technol ; 58(17): 7662-7671, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38578018

RESUMEN

Photothermal catalysis is extremely promising for the removal of various indoor pollutants owing to its photothermal synergistic effect, while the low light utilization efficiency and unclear catalytic synergistic mechanism hinder its practical applications. Here, nitrogen atoms are introduced, and Pt nanoparticles are loaded on TiO2 to construct Pt/N-TiO2-H2, which exhibits 3.5-fold higher toluene conversion rate than the pure TiO2. Compared to both photocatalytic and thermocatalytic processes, Pt/N-TiO2-H2 exhibited remarkable performance and stability in the photothermocatalytic oxidation of toluene, achieving 98.4% conversion and 98.3% CO2 yield under a light intensity of 260 mW cm-2. Furthermore, Pt/N-TiO2-H2 demonstrated potential practical applicability in the photothermocatalytic elimination of various indoor volatile organic compounds. The synergistic effect occurs as thermocatalysis accelerates the accumulation of carboxylate species and the degradation of aldehyde species, while photocatalysis promotes the generation of aldehyde species and the consumption of carboxylate species. This ultimately enhances the photothermocatalytic process. The photothermal synergistic effect involves the specific conversion of intermediates through the interplay of light and heat, providing novel insights for the design of photothermocatalytic materials and the understanding of photothermal mechanisms.


Asunto(s)
Oxidación-Reducción , Tolueno , Catálisis , Tolueno/química , Calor , Luz , Titanio/química , Platino (Metal)/química , Compuestos Orgánicos Volátiles/química
8.
Vet Microbiol ; 293: 110095, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643723

RESUMEN

Porcine epidemic diarrhea virus (PEDV) envelope protein (E) has been characterized as an important structural protein that plays critical roles in the interplay with its host to affect the virus life cycle. Stress granules (SGs) are host translationally silent ribonucleoproteins, which are mainly induced by the phosphorylation of eIF2α in the PERK/eIF2α signaling pathway. Our previous study found that PEDV E protein caused endoplasmic reticulum stress response (ERS)-mediated suppression of antiviral proteins' translation. However, the link and the underlying mechanism by which PEDV induces SGs formation and suppresses host translation remain elusive. In this study, our results showed that PEDV E protein significantly elevated the expression of GRP78, CANX, and phosphorylation of PERK and eIF2α, indicating that the PERK/eIF2α branch of ERS was activated. PEDV E protein localized to the ER and aggregated into puncta to reconstruct ER structure, and further induced SGs formation, which has been caused through upregulating the G3BP1 expression level. In addition, a significant global translational stall and endogenous protein translation attenuation were detected in the presence of E protein overexpression, but the global mRNA transcriptional level remained unchanged, suggesting that the shutoff of protein translation was associated with the translation, not with the transcription process. Collectively, this study demonstrates that PERK/eIF2α activation is required for SGs formation and protein translation stall. This study is beneficial for us to better understand the mechanism by which PEDV E suppresses host protein synthesis, and provides us a new insight into the host translation regulation during virus infection.


Asunto(s)
Factor 2 Eucariótico de Iniciación , Virus de la Diarrea Epidémica Porcina , Biosíntesis de Proteínas , Transducción de Señal , Gránulos de Estrés , eIF-2 Quinasa , Virus de la Diarrea Epidémica Porcina/fisiología , Animales , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Porcinos , Células Vero , Gránulos de Estrés/metabolismo , Gránulos de Estrés/genética , Chlorocebus aethiops , Chaperón BiP del Retículo Endoplásmico/metabolismo , Fosforilación , Estrés del Retículo Endoplásmico
9.
Diagn Pathol ; 19(1): 13, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218832

RESUMEN

OBJECTIVE: This study aims to identify and analyze the risk factors associated with Cervical Lymph Node Metastasis (CNM) in Papillary Thyroid Carcinoma (PTC) patients. METHODS: We conducted a retrospective study involving the clinicopathological data of 2384 PTC patients admitted to our hospital between January 2016 and December 2020. All relevant data were statistically processed and analyzed. RESULTS: The related risk factors for Central Lymph Node Metastasis (CLNM) were gender (male), age (≤ 30 years old), tumor lesion size (> 0.855 cm), and multifocal tumor foci. The ROC curve revealed that the critical value for predicting CLNM based on tumor lesion size was 0.855 (sensitivity = 57.9%, specificity = 69%, AUC = 0.269, and P < 0.05). Lateral Lymph Node Metastasis (LLNM) was positively correlated with tumor diameter. Specifically, the LLNM rate increased with the tumor diameter. LLNM occurrence was significantly higher in zones II, III, and IV than in zones I and V. Although the BRAF gene mutation detection assay has certain clinical benefits in diagnosing PTC and LLNM, no statistically significant difference was found in its relationship with central and lateral neck lymph node metastases (P = 0.741). CONCLUSION: Our findings revealed that CLNM is associated with gender (male), age (≤ 30 years old), tumor lesion size (> 0.855 cm), and multiple tumor lesions in PTC patients. Central Lymph Node Dissection (CLND) is recommended for patients with these risk factors. On the other hand, preoperative ultrasound examination, fine-needle pathological examination, and genetic testing should be used to determine whether Lateral Cervical Lymph Node Dissection (LLND) is needed.


Asunto(s)
Carcinoma , Neoplasias de la Tiroides , Neoplasias del Cuello Uterino , Femenino , Humanos , Masculino , Adulto , Cáncer Papilar Tiroideo/patología , Metástasis Linfática/patología , Neoplasias de la Tiroides/patología , Estudios Retrospectivos , Ganglios Linfáticos/patología , Factores de Riesgo , Carcinoma/patología , Neoplasias del Cuello Uterino/patología
10.
World J Clin Cases ; 11(32): 7770-7777, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38073695

RESUMEN

BACKGROUND: Most patients with acute exacerbation chronic obstructive pulmonary disease (AECOPD) have respiratory failure that necessitates active correction and the improvement of oxygenation is particularly important during treatment. High flow nasal cannula (HFNC) oxygen therapy is a non-invasive respiratory aid that is widely used in the clinic that improves oxygenation state, reduces dead space ventilation and breathing effort, protects the loss of cilia in the airways, and improves patient comfort. AIM: To compare HFNC and non-invasive positive pressure ventilation in the treatment of patients with AECOPD. METHODS: Eighty AECOPD patients were included in the study. The patients were in the intensive care department of our hospital from October 2019 to October 2021. The patients were divided into the control and treatment groups according to the different treatment methods with 40 patients in each group. Differences in patient comfort, blood gas analysis and infection indices were analyzed between the two groups. RESULTS: After treatment, symptoms including nasal, throat and chest discomfort were significantly lower in the treatment group compared to the control group on the 3rd and 5th days (P < 0.05). Before treatment, the PaO2, PaO2/FiO2, PaCO2, and SaO2 in the two groups of patients were not significantly different (P > 0.05). After treatment, the same indicators were significantly improved in both patient groups but had improved more in the treatment group compared to the control group (P < 0.05). After treatment, the white blood cell count, and the levels of C-reactive protein and calcitonin in patients in the treatment group were significantly higher compared to patients in the control group (P < 0.05). CONCLUSION: HFNC treatment can improve the ventilation of AECOPD patients whilst also improving patient comfort, and reducing complications. HFNC is a clinically valuable technique for the treatment of AECOPD.

11.
Infect Drug Resist ; 16: 5729-5740, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37670981

RESUMEN

Background: Virus infection can cause the changes of lncRNA expression levels to regulate the interaction between virus and host, but the relationship between BHV-1 infection and lncRNA has not been reported. Methods: In this study, in order to reveal the molecular mechanism of RNA in BoHV-1 infection, the Madin-Darby bovine kidney (MDBK) cells were infected with BoHV-1, transcriptome sequencing were performed by next-generation sequencing at 18 h or 24 h or 33 h of viral infection and then based on the competitive endogenous RNA (ceRNA) theory, lncRNA-miRNA-mRNA networks were constructed using these high-throughput sequencing data. The network analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed for functional annotation and exploration of ncRNA ceRNAs in BoHV-1 infection. Results: The results showed that 48 lncRNAs, 123 mRNAs and 20 miRNAs as differentially expressed genes, and the mitogen activated protein kinase (MAPK) pathway and calcium signaling pathway were significantly enriched in the ceRNA network. Some differentially expressed lncRNA genes were randomly selected for verification by RT-qPCR, and the results showed that their expression trend was consistent with the results of transcriptome sequencing data. Conclusion: This study revealed that BoHV-1 infection can affect the expression of RNAs in MDBK cells and the regulation of ceRNA network to carry out corresponding biological functions in the host, but further experimental studies are still necessary to prove the hub genes function in ceRNA network and the molecular mechanism in BoHV-1 infection.

13.
J Environ Sci (China) ; 134: 2-10, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37673529

RESUMEN

Ground-level ozone is harmful to human beings and ecosystems, while room-temperature catalytic decomposition is the most effective technology for ozone abatement. However, solving the deactivation of existing metal oxide catalysts was caused by oxygen-containing intermediates is challenging. Here, we successfully prepared a two-dimensional NiFe layered double hydroxide (NiFe-LDH) catalyst via a facile co-precipitation method, which exhibited stable and highly efficient performance of ozone decomposition under harsh operating conditions (high space velocity and humidity). The NiFe-LDH catalyst with Ni/Fe = 3 and crystallization time over 5 hr (named Ni3Fe-5) exhibited the best catalytic performance, which was well beyond that of most existing manganese-based oxide catalysts. Specifically, under relative humidity of 65% and space velocity of 840 L/(g·hr), Ni3Fe-5 showed ozone conversion of 89% and 76% for 40 ppmV of O3 within 6 and 168 hr at room-temperature, respectively. We demonstrated that the layered structure of NiFe-LDH played a decisive role in its outstanding catalytic performance in terms of both activity and water resistance. The LDH catalysts fundamentally avoids the deactivation caused by the occupancy of oxygen vacancies by oxygen-containing species (H2O, O-, and O2-) in manganese-based oxide. This study indicated the promising application potential of LDHs than manganese-based oxide catalysts in removal of gaseous ozone.


Asunto(s)
Ozono , Humanos , Ecosistema , Manganeso , Oxígeno , Agua , Óxidos
14.
Immun Inflamm Dis ; 11(7): e928, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37506158

RESUMEN

INTRODUCTION: Staphylococcus aureus seriously threatens human and animal health. IsdB137-361 of the iron surface determinant B protein (IsdB) from S. aureus exhibits the strong immunogenicity, but its immunoprotective effect is still to be further promoted. Because PEI-PLGA nanoparticles are generated by PEI conjugate with PLGA to develop great potential as a novel immune adjuvant, the immunogenicity of IsdB137-361 is likely be strengthened by PEI-PLGA. METHODS: Here, PEI-PLGA nanoparticles containing IsdB137-361 proteins were prepared by optimizing the entrapment efficiency. Mice were immunized with IsdB137-361 -PEI-PLGA nanoparticles to assess their anti-S. aureus effects. The level of IFN-γ, IL-4, IL-17, and IL-10 cytokines from spleen lymphocytes in mice and generation of the antibodies against IsdB137-361 in serum was assessed by ELISA, the protective immune response was appraised by S. aureus challenge. RESULTS: IsdB137-361 proteins loaded by PEI-PLGA were able to stimulate effectively the proliferation of spleen lymphocytes and increase the secretion of IFN-γ, IL-4, IL-17, and IL-10 cytokine from spleen lymphocytes, and significantly enhance generation of the antibodies against IsdB137-361 in serum, reduce the level of bacterial load in liver, spleen and kidney, and greatly improve the survival rate of mice after challenge. CONCLUSION: These data showed that PEI-PLGA nanoparticles can significantly enhance the immunogenicity of IsdB137-361 proteins, and provide an important reference for the development of novel immune adjuvant.


Asunto(s)
Nanopartículas , Infecciones Estafilocócicas , Humanos , Animales , Ratones , Staphylococcus aureus , Interleucina-10 , Interleucina-17 , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Interleucina-4 , Proteínas de la Membrana , Adyuvantes Inmunológicos , Citocinas , Infecciones Estafilocócicas/prevención & control
15.
J Environ Manage ; 345: 118645, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37499414

RESUMEN

Clarifying the driving forces of O3 and fine particulate matter (PM2.5) co-pollution is important to perform their synergistic control. This work investigated the co-pollution of O3 and PM2.5 in Hainan Province using an observation-based model and explainable machine learning. The O3 and PM2.5 pollution that occurs in winter is affected by the wintertime East Asian Monsoon. The O3 formation shifts from a NOx-limited regime with a low O3 production rate (PO3) in the non-pollution season to a transition regime with a high PO3 in the pollution season due to an increase in NOx concentrations. Increased O3 and atmospheric oxidation capacity promote the conversion from gas-phase precursors to aerosols. Meanwhile, the high concentration of particulate nitrate favors HONO formation via photolysis, in turn facilitating O3 production. Machine learning reveals that NOx promotes O3 and PM2.5 co-pollution during the pollution period. The PO3 shows an upward trend at the observation site from 2018 to 2022 due to the inappropriate reduction of volatile organic compounds (VOCs) and NOx in the upwind areas. Our results suggest that a deep reduction of NOx should benefit both O3 and PM2.5 pollution control in Hainan and bring new insights into improving air quality in other regions of China in the future.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Compuestos Orgánicos Volátiles/análisis
16.
Int J Clin Exp Pathol ; 16(5): 99-107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293136

RESUMEN

OBJECTIVE: This study aims to investigate the pathogenesis, clinical characteristics, diagnosis, treatment, and prognosis of primary thyroid lymphoma (PTL) for a better understanding of the disease and a more accurate PTL diagnosis, thereby preventing misdiagnosis and mistreatment. METHODS: The clinical manifestations, biochemical examination, ultrasound examination, imaging examination, pathologic examination, diagnosis, and treatment of four PLT patients admitted to the Department of Thyroid and Breast Surgery of the Affiliated Hospital of Inner Mongolia Medical University from January 2010 to December 2020 were retrospectively analyzed. RESULTS: Diffuse large B-cell lymphoma (DLBCL) expressing cluster of differentiation 20 (CD20) were detected in all four PTL patients. Hashimoto's thyroiditis (HT) with increased anti-thyroglobulin antibodies (TGAb) occurred in two PTL patients, while antithyroid peroxidase autoantibody (TPOAb) was increased in three cases. All four patients underwent surgical and chemoradiotherapy treatments. Patients were without tumors during the follow-up ranging from 8 to 55 months. CONCLUSION: PTL is a primary extranodal lymphoma of the thyroid and is mainly derived from B-cell non-Hodgkin's lymphoma. The pathogenesis of PTL remains unclear, but it is closely related to HT. Clinical diagnosis in this study was determined by either needle biopsy or surgical resection.

17.
Environ Sci Technol ; 57(23): 8671-8679, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37235870

RESUMEN

Nitrate photolysis is a vital process in secondary NOx release into the atmosphere. The heterogeneous oxidation of SO2 due to nitrate photolysis has been widely reported, while the influence of SO2 on nitrate photolysis has rarely been investigated. In this study, the photolysis of nitrate on different substrates was investigated in the absence and presence of SO2. In the photolysis of NH4NO3 on the membrane without mineral oxides, NO, NO2, HONO, and NH3 decreased by 17.1, 6.0, 12.6, and 57.1% due to the presence of SO2, respectively. In the photolysis of NH4NO3 on the surface of mineral oxides, SO2 also exhibited an inhibitory effect on the production of NOx, HONO, and NH3 due to its reducibility and acidic products, while the increase in surface acidity due to the accumulation of abundant sulfate on TiO2 and MgO promoted the release of HONO. On the photoactive oxide TiO2, HSO3-, generated by the uptake of SO2, could compete for holes with nitrate to block nitrate photolysis. This study highlights the interaction between the heterogeneous oxidation of SO2 and nitrate photolysis and provides a new perspective on how SO2 affects the photolysis of nitrate absorbed on the photoactive oxides.


Asunto(s)
Nitratos , Óxidos , Fotólisis , Minerales
18.
Org Lett ; 25(17): 3083-3088, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37087760

RESUMEN

Fluorinated amino acids are a class of highly valuable building blocks that are widely employed in biological science and pharmaceutical industry for improved stability, activity, and folding property of proteins. However, the synthetic approach has conventionally been constrained by harsh conditions and limited substrate range. We demonstrate a general synthetic protocol for photoinduced α-CF3 amino acids using continuous flow technology that benefits from enhanced fusion and precise control of reaction time, making it potentially useful in large-scale peptide synthesis.


Asunto(s)
Aminoácidos , Microfluídica , Aminoácidos/química , Proteínas , Técnicas de Química Sintética
19.
Chemistry ; 29(35): e202300366, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37051734

RESUMEN

Selective and sensitive detection of inorganic pyrophosphate (PPi) are of great significance both for clinical applications and fundamental research. In this work, a ratiometric fluorescent probe was developed by decorating a porphyrin-based metal-organic framework (PCN-224) with sulfur nanodots (S-dots). The red-fluorescence of PCN-224 was significantly promoted (more than 6-fold) by S-dots through inhibiting molecular motion of porphyrin ligand, which also provided active sites for the detection of Cu2+ and PPi. Cu2+ could selectively quench the red-fluorescence of PCN-224 through coordination with porphyrin ligand, and the competition reaction between PPi and Cu2+ resulted in the decomposing of coordination and recovery of red-fluorescence. The blue-fluorescence from S-dots was deemed as effective reference, which provided a built-in correction in complex environments. Based on these photophysical properties, a ratiometric fluorescence assay was developed for the quantitative detection of Cu2+ and PPi, with a limit of detection of 0.11 and 2.66 µM, respectively. The accuracy and practical applications of assays were also demonstrated by detection in tap water and human serum samples.


Asunto(s)
Estructuras Metalorgánicas , Puntos Cuánticos , Humanos , Estructuras Metalorgánicas/química , Difosfatos/química , Fluorescencia , Ligandos , Bioensayo , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia , Límite de Detección , Puntos Cuánticos/química
20.
Iran J Immunol ; 20(1): 57-66, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36932950

RESUMEN

Background: Staphylococcus aureus is an opportunistic pathogen responsible for various infections with diverse clinical presentation and severity. The α-hemolysin is a major virulence factor in the pathogenesis of S. aureus infections. Objective: To produce a chimeric fusion protein for hemolytic detection of the S. aureus isolates and as a component of a multi-antigen vaccine. Methods: The fused strategy employed a flexible linker to incorporate the possible B cell and T cell determinants into one chimera (HlaD). The humoral and cellular response to the HlaD in mice was assessed to reveal a non-significant difference compared with the full-length α-hemolysin mutant (Hla H35L). Results: The results of the protective effect, the mimetic lung cell injury, and bacterial clearness demonstrated that the mice vaccinated with the HlaD alleviated the severity of the infection of the S. aureus, and the HlaD could similarly function with Hla H35L. Conclusion: The chimeric fusion (HlaD) provided a diagnostic antigen for hemolysis of the S. aureus strains and a potential vaccine component.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Ratones , Staphylococcus aureus/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Pulmón/metabolismo , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...